Multicolor microcontact printing of proteins on nanoporous surface for patterned immunoassay
نویسندگان
چکیده
The large scale patterning of therapeutic proteins is a key to the efficient design, characterization, and production of biologics for cost effective, high throughput, and point-of-care detection and analysis system. We demonstrate an efficient method for protein deposition and adsorption on nanoporous silica substrates in specific patterns using a method called ‘‘micro-contact printing’’. Multiple color-tagged proteins can be printed through sequential application of such micro-patterning technique. Two groups of experiments were performed. In the first group, the protein stamp was aligned precisely with the printing sites, where the stamp was applied multiple times. Optimal conditions were identified for protein transfer and adsorption using the pore size of 4 nm and thickness of 30 nm porous silica thin film. In the second group, we demonstrate the patterning of two-color rabbit immunoglobin labeled with fluorescein isothiocyanate and tetramethyl rhodamine iso-thiocyanate on porous silica substrates that have a pore size 4 nm, porosity 57% and thickness of the porous layer 30 nm. A pair of protein stamps, with corresponding alignment markings and coupled patterns, were aligned and used to produce a twocolored stamp pattern of proteins on porous silica. Different colored proteins can be applied to exemplify the diverse protein composition within a sample. This method of multicolor microcontact printing can be used to perform a fluorescence-based patterned enzyme-linked immunosorbent assay to detect the presence of various proteins within a sample.
منابع مشابه
Enhanced microcontact printing of proteins on nanoporous silica surface.
We demonstrate porous silica surface modification, combined with microcontact printing, as an effective method for enhanced protein patterning and adsorption on arbitrary surfaces. Compared to conventional chemical treatments, this approach offers scalability and long-term device stability without requiring complex chemical activation. Two chemical surface treatments using functionalization wit...
متن کاملImmunofluorescence Detection of Quantum Dot Labeled Cancer Cells Microcontact Printing, Nanoporous Surface Enhanced Absorption, and Microfluidic Applications
......................................................................................................................................... i Acknowledgements ...................................................................................................................... iii Table of
متن کاملCreating two-dimensional patterned substrates for protein and cell confinement.
Microcontact printing provides a rapid, highly reproducible method for the creation of well-defined patterned substrates.(1) While microcontact printing can be employed to directly print a large number of molecules, including proteins,(2) DNA,(3) and silanes,(4) the formation of self-assembled monolayers (SAMs) from long chain alkane thiols on gold provides a simple way to confine proteins and ...
متن کاملMicrofluidic immunodetection of cancer cells via site-specific microcontact printing of antibodies on nanoporous surface.
We demonstrate an efficient method for cancer cell capture via cell line-specific protein deposition on nanoporous surface in microfluidic channels. Specifically, anti-epithelial cell adhesion molecules (EpCAM) were microcontact printed onto nanoporous silica substrate with optimal pore size of 4 nm, porosity of 52.4 ± 0.2%, and thin film thickness of 130 ± 0.5 nm. SkBr3, Colo205, and MDA-MB-43...
متن کاملAsymmetric printing of molecules and zeolites on self assembled monolayers.
Microcontact printing (mCP) is used to immobilize dyes and peptides asymmetrically, by a "peptide coupling" reaction, on monolayers of zeolite L crystals in the contact area between the stamp and the surface of the monolayer. Chemically patterned surfaces of monolayers of zeolite L crystals are obtained by using patterned stamps with different ink solutions. Additional printing of functionalize...
متن کامل